

SHAPE

Shaping the Green Transition

- with net carbon negative surfaces

Roadmap

December 2022

Shaping the Green Transition (SHAPE) – with net carbon negative surfaces

The Veturi SHAPE ecosystem aims to take a share of the remanufacturing business growth which is expected to reach 90 B€ in EU by 2030

Driving green transition of manufacturing industry by enabling net carbon negative surfaces

Shaping the Green Transition (SHAPE) – with net carbon negative surfaces

BOOSTING CIRCULARITY

SUSTAINABLE MATERIALS

REPAIR, REUSE and REMANUFACTURE

INTELLIGENCE THROUGHOUT VALUE-CHAINS

Linking value-chains to close resource cycles

From value chain to resource cycles

- Exploring functionality of industrial byproducts in surface finishing applications
- Elaborating the potential and value of different surface finishing waste especially within industries handling wood, construction, plastics and fiber reinforced
- From dust to value.

Circular logistics

- Mapping, assessing and modelling to secure sustainability of logistics solutions enabling circularity.
- Modelling abrasive waste streams.
- · Dust handling.

Ecodesign compliant surface finishing

- Fully ecodesign compliant abrasives
- Circular and functional surface material solutions enabling full ecodesign compliance throughout value chain.
- Building markets and business models for circular products

Beyond ecodesign

Ecodesign compliant coatings

- Sustainable resin formulation development
- Biocomposites with unique properties
- Nano and micron sized cellulose materials
- Functional fillers
- Circular fillers for resins, e.g. carbon side streams or incineration dust

Non-fossile plastics

• Sustainable plastic like concepts

Ecodesign compliant textiles

- Develop for circularity
- Evaluate/Develop biobased fibers and yarns
- · Cellulosic materials for textiles and recyclability

Sustainable cutting media technology & Printed ceramics

- Printing techniques for sustainable manufacturing
- Super hard materials
- Exploring the potential of by-product side streams
- · Shaped ceramics by printing

Sustainable surface conditioning materials

- Biobased additives
- VOC free formulas for healthy work environment

Catching carbon by prolonging product life

Life cycle

 Prolonging product life cycle through development of new refurbish and repair technologies

Surface engineering

- Deepen the understanding of surfaces and surface interaction through analysis and optimization
- Create ecodesign compliant functional surfaces for durable long-life products.

Surface finishing of sustainable materials

 Surface finishing solutions for new biobased or circular materials such as green concrete, biobased plastics, materials reinforced with natural fibers, biobased paint and coatings

Sustainable surface conditioning

- · Functional primers and coatings.
- Self-destructive primers or unzip surfaces
- · Paint rectification.
- Restoring wind mill component and other fiber reinforced structures.
- Polishing Surface finishing restoring surfaces and prolonging service life of for example consumer electronics

Data driven value creation

Machine learning & Advanced analytics

Next generation machine learnings models

• Combine data-driven models with domain expert created physics centred models

Data models and APIs for intelligence and traceability

• Modular solutions of models for easy reuse and maintenance

Supervisory control models

• High level multi-input multi output controls for complex system optimization

Data driven sustainability management

Sustainability performance ratio

 Method for comparing different products based on total solution footprint

Dust measurement (Health Index)

Index to evaluate the long-term effects of work environment

Verified sustainable sourcing

 Technologies centred around verification of sourced raw materials

Future of manufacturing

- · Intelligent surface finishing
- Smarter factories through robotization, inkjet and 3D printing

Disruptive new circular business – Start-up Incubator – Surface Center of Excellence – Surface Value Lab – Piloting and testbeds for new concepts

SHAPE 2023 objectives

BOOSTING CIRCULARITY

SUSTAINABLE MATERIALS

REPAIR, REUSE and REMANUFACTURE

INTELLIGENCE THROUGHOUT VALUE-CHAINS

Linking value-chains to close resource cycles

- Exploring the potential of industrial byproducts as raw material in surface finishing applications
- From dust to value: elaborating the potential and value of dust, focus on wood and construction
- Circular logistics: Abrasive waste streams

Co-innovation:

From dust to value

Beyond ecodesign

- Functional fillers Evaluating existing circular materials
- Circular ceramics with printing technology
- VOC-free compounds
- Ecodesign compliant textiles

Co-innovation:

- Functional fillers
- Ecodesign compliant textiles

Catching carbon by prolonging product life

- Deepen the understanding of surfaces and surface interaction through analysis and optimization
- Surface finishing solutions for new biobased or circular materials
- Functional surfaces for remanufacturing

Co-innovation

· Functional surfaces

Data driven value creation

- Data driven sustainability management
- Modelling sustainability performance ratio

Co-innovation:

• Data driven sustainability management

Cross cutting topics: Start-up Incubator – disruptive new circular business. Surface Center of Excellence – materials technology, analytical solutions, ecodesign. Surface Value Lab – piloting and testbeds for new concepts.